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Abstract

In this study, satellite passive microwave sensor observations from the TRMM

Microwave Imager (TMI) are utilized to make estimates of latent + eddy sensible heating

rates (Q1-QR) in regions of precipitation. The TMI heating algorithm (TRAIN) is

calibrated, or “trained” using relatively accurate estimates of heating based upon

spaceborne Precipitation Radar (PR) observations collocated with the TMI observations

over a one-month period. The heating estimation technique is based upon a previously

described Bayesian methodology, but with improvements in supporting cloud-resolving

model simulations, an adjustment of precipitation echo tops to compensate for model

biases, and a separate scaling of convective and stratiform heating components that leads

to an approximate balance between estimated vertically-integrated condensation and

surface precipitation.

Estimates of Q1-QR from TMI compare favorably with the PR training estimates and

show only modest sensitivity to the cloud-resolving model simulations of heating used to

construct the training data. Moreover, the net condensation in the corresponding annual

mean satellite latent heating profile is within a few percent of the annual mean surface

precipitation rate over the tropical and subtropical oceans where the algorithm is applied.

Comparisons of Q1 produced by combining TMI Q1-QR with independently derived

estimates of QR show reasonable agreement with rawinsonde-based analyses of Q1 from

two field campaigns, although the satellite estimates exhibit heating profile structure with

sharper and more intense heating peaks than the rawinsonde estimates.
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1. Introduction

The latent heat released or consumed during phase changes of water substance is a

major component of the atmospheric energy budget, and one that dominates other

diabatic processes in the deep tropics; see Newell (1969); Schaack et al. (1990). Latent

heating is also responsible for the creation of available potential energy, one mechanism

by which convective clouds can interact with the larger-scale atmospheric circulations of

their environment (Nitta 1970, 1972; Yanai et al. 2000), and the atmospheric response to

heating is sensitive to its vertical distribution; e.g. Hartmann et al. (1984), Lau and Peng

(1987), Puri (1987), Valdes and Hoskins (1989), Mapes and Houze (1995), Schumacher

et al. (2004). Considering either diagnostics of the atmospheric energy budget or cloud-

environment interactions, knowledge of the four-dimensional distribution of latent

heating on a global basis is of value.

Given the interest in atmospheric latent heating distributions from these different

perspectives, several methods for estimating latent heating from satellite observations

have been developed. Tao et al. (1990) and Smith et al. (1994) used satellite estimates of

precipitation vertical structure to infer latent heating rates in discrete atmospheric layers,

assuming that the net flux of precipitation into or out of a given layer is balanced by

microphysical processes under steady state conditions. Tao et al. (1993) later simplified

their approach by treating the entire atmospheric column as a single layer, scaling

representative convective and stratiform heating profiles from cloud-resolving model

simulations by the net convective and stratiform precipitation fluxes, respectively, at the

surface. Shige et al. (2004; hereafter SH) expanded upon this technique, extracting

precipitation column depth as well as convective-stratiform proportion information from
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spaceborne radar observations to further categorize a given vertical profile, and then

assigning consistent cloud-resolving model generated heating profiles to each category of

precipitation profile. Shige et al. (2007) improved upon their method by subdividing the

atmosphere (at the freezing level) in convective regions into two layers and applying a

precipitation flux scaling of cloud-model generated profiles in each layer. In an

alternative approach, Satoh and Noda (2001) and Katsumata et al. (2009a) applied a

steady-state moisture budget to the atmospheric column, and adjusted parameterized

profiles of vertical motion to yield profiles of net condensation and latent heating

consistent with satellite-observed precipitation.

Although the methods of Tao et al. (1993) and Smith et al. (1994) have been applied

to precipitation estimates from satellite passive microwave sensors, the aforementioned

studies have primarily emphasized methods that utilize the detailed vertical precipitation

structure information available from spaceborne radar to estimate latent heating. In a

separate line of investigation, Olson et al. (1999), Olson et al. (2006), and Grecu and

Olson (2006; hereafter GO), developed methods that directly interpreted satellite passive

microwave signatures in terms of heating vertical structure. The first two of these studies

utilized cloud-resolving model simulations to synthesize microwave radiances; the model

relationships between radiances and heating profiles were then employed in a Bayesian

methodology for inferring heating profiles from satellite microwave sensor observations.

These attempts to “train” a passive microwave heating algorithm using only cloud-

resolving model simulations resulted in high biases of estimated upper-tropospheric

precipitation and heating, due to high biases in the precipitation simulations and

synthesized microwave signatures; see Lang et al. (2007). In GO, the high biases in
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estimated precipitation and heating profiles were overcome using globally-distributed

spaceborne radar profiles of precipitation/heating instead of a limited number of cloud

model simulations to train the passive microwave algorithm. However, in the GO study,

the estimation of precipitation profiles was emphasized, and only limited comparative

data were used to evaluate the estimates of heating vertical structure.

In the present study, the satellite passive microwave remote-sensing method for

estimating vertical latent heating profiles that was briefly introduced in GO is revised and

analyzed, with emphasis on the evaluation of uncertainties in heating estimates. The

estimation method, identified here as TRAIN, relies on two algorithms: the first utilizes

cloud-resolving model simulations to interpret features of the vertical profiles of

reflectivity measured by spaceborne radar to estimate vertical heating profiles. An

algorithm of this kind was shown by Shige et al. (2004, 2007) to produce heating

estimates with reasonable accuracy in synthetic data tests and in comparisons to

independent rawinsonde-based estimates of heating. However, in order to overcome the

limited global sampling by spaceborne radars, heating estimates from the spaceborne

radar algorithm are used to train a second algorithm that requires only satellite passive

microwave radiometer observations to estimate heating.

Relative to GO, the satellite microwave estimation method is modified to improve the

heating diagnosis and clarify the analysis of the estimates: First, only spaceborne radar

(Precipitation Radar, or PR) data from the TRMM standard algorithm are used for

training, as opposed to the combined radar-microwave algorithm training of GO, in an

effort to make to the training algorithm a more independent reference. In addition,

although the passive microwave heating algorithm is not solely dependent on cloud-
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resolving model simulations for training, as in implementations prior to GO, these

simulations still have an impact through the PR training algorithm, and so greater care

has been taken to improve the fidelity of the simulations and to study their impact on

heating estimates. To this end, the simulations are performed at very high horizontal and

vertical resolutions to produce more physically consistent precipitation and heating

structures, and the environmental forcing of the simulations is varied to produce a

diversity of structures. Also, the simulated heating structures incorporated into the PR

training algorithm are adjusted to account for differences between the model-simulated

convective/stratiform precipitation proportions and the PR-estimated proportions. This

adjustment ensures a near-balance of vertically integrated condensation and surface

precipitation on a global basis. Further, the impact of precipitation depth biases due to

the cloud-resolving simulations is mitigated by a echo top scaling of the training profiles.

In section 2, the satellite heating algorithm is described in detail. This section is

followed by an evaluation of the errors of heating estimates relative to the PR training

estimates in section 3, and an evaluation of errors due to the choice of cloud-resolving

model simulations in section 4. In section 5, passive microwave estimates of latent and

eddy sensible heating are combined with estimates of radiative heating and compared to

rawinsonde-based analyses of total diabatic heating from two field campaigns. Finally, a

summary and recommendations are offered in section 6.

2. Method

a. Overview
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The latent heating algorithm has two components, which are illustrated schematically

in Fig. 1. A training database is first created to establish the relationships between

vertical latent heating profiles and upwelling microwave radiances, as they might be

observed by a satellite passive microwave radiometer. This is accomplished by

assigning vertical latent heating profiles to vertical precipitation profiles retrieved from

spaceborne radar observations. Look-up tables derived from cloud-resolving model

simulations are used to relate radar-derived precipitation profile features to vertical latent

heating structures in the profile assignment procedure. The profile assignment procedure

is similar to that of SH, but in addition, echo top information in stratiform precipitation

regions is utilized.

To complete the training database, upwelling microwave radiances consistent with

the radar-derived precipitation/latent heating profiles are either (a) calculated from the

radar-retrieved 3D precipitation field or (b) assigned, if coincident satellite passive

microwave observations are available. In the present study, microwave radiances are

assigned, since the spaceborne radar data are derived from the PR, and coincident,

upwelling microwave radiances from the TRMM Microwave Imager (TMI) are available

within the 220 km-wide overlap swath. For algorithm applications to other satellite

passive radiometers such as the Special Sensor Microwave/Imager, or the Advanced

Microwave Scanning Radiometer-Earth Observing System, upwelling radiances would

be calculated, since the channel frequencies and viewing geometry of these instruments

differ from those of the TMI. In the present study, a general training database is created

by assigning upwelling TMI radiances to coincident PR-estimated precipitation and latent
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heating profiles, utilizing all coincident radiance/precipitation-heating profile pairs

collected from one month of TRMM observations.

Once the training database is created, it may be applied to any TMI observations for

which the training data are representative. Given a set of TMI radiance observations at a

particular location, a Bayesian method is employed to composite precipitation or latent

heating profiles in the training database and thereby construct profile estimates that are

consistent with the TMI observations. The basic formulation of the Bayesian method is

described in GO. In the following two subsections, the creation of the training database

and radiometer latent heating algorithm are described in greater detail.

b. Generation of Training Data

The use of high-resolution, spaceborne radar derived precipitation profiles to train

satellite microwave radiometer algorithms has been exploited in other remote sensing

studies for improving estimates of precipitation (e.g., Bauer et al. 2001, Shin and

Kummerow 2003, Kubota et al. 2007), but only in GO were these databases used to

estimate latent heating. The primary difference between the latent heating algorithm of

the current study and GO lies in the construction of the training database, described here.

As mentioned previously, GO utilized combined PR-TMI precipitation profile

estimates as the foundation of their training database. The combined PR-TMI algorithm

was described in Grecu et al. (2004), and it was demonstrated in that study that the

combined PR-TMI estimates of precipitation were remarkably consistent with TRMM PR

2A-25 Version 5 algorithm estimates; see Iguchi et al. (2000) for a description of the PR

2A25 algorithm. However, in order to make clean intercomparisons of TMI-derived and
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PR-derived precipitation/latent heating estimates in the present study, PR-only (2A-25

Version 6) estimates of precipitation profiles are used as the foundation of the training

database. All 2A-25 profiles from July 2000, over ocean surfaces where precipitation

was detected, are used to populate the training database. It was shown by GO that only

small differences in subsequent satellite radiometer estimates of precipitation are incurred

by selecting alternate monthly periods for training; i.e., one month of training data well

represents the diversity atmospheric profiles that the satellite radiometer may encounter

in any particular time period.

As described in the Introduction, a number of methods for assigning latent heating

vertical profiles to precipitation vertical profiles from the PR have been developed. The

basic principle behind several of these methods (Tao et al. 1990, 1993; Smith et al. 1994;

Satoh and Noda 2001; Shige et al. 2004, 2007) is that under steady-state conditions, the

net flux of precipitation out of (into) a given atmospheric layer must be compensated by a

net source (sink) of precipitation particles within the layer. The net flux of precipitation

is determined either from the precipitation fallout rate estimated using the PR algorithm,

or from the estimated water content and a determination of the precipitation fallspeed and

wind vertical velocity. The net rates of condensation/deposition (evaporation/

sublimation) provide the sources (sinks) of precipitation within the atmospheric layer,

and these precipitation phase changes are related to latent heating through the specific

latent heats of condensation or sublimation, i.e., Lv or Ls. Near the 0oC isotherm, either

precipitation freezing or melting can occur, with the associated release or consumption of

latent heat per unit mass given by Lf. Although the assumed steady-state conditions are

not expected at the scales of the instantaneous footprint data to which the heating
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algorithms are usually applied, it is understood that the steady state assumption may be

appropriate for larger space or space-time averages of the satellite heating estimates. In

Tao et al. (1993) and Shige et al. (2004, 2007) specifically, cloud-resolving model

simulations are utilized to relate the unknown vertical structure of heating or cooling

within an atmospheric layer to precipitation fluxes. And, instead of imposing a strict

balance between layer-integrated heating and net vertical precipitation flux, only a

scaling of the model heating profile by the precipitation flux is performed to allow for the

effects of horizontal advection between convective and stratiform regions. These

horizontal advection effects are represented, at least implicitly, by the cloud-resolving

model simulations.

In the present study, the application of the steady-state precipitation principle follows

the work of SH, but stratiform precipitation is treated in a different way. First, the PR

precipitation profile observations are separated into convective and stratiform categories,

since it is well-established that the cloud processes and vertical structures of latent

heating in convective and stratiform regions are characteristically different; see Houze

(1989). Typically, in convective regions over the tropical and subtropical oceans, latent

heating profiles exhibit a positive maximum in the lower- to mid-troposphere due to

condensation/deposition of water vapor in moist updrafts. In stratiform regions, heating

profiles generally have a positive maximum in the upper-troposphere and a negative

minimum due to evaporation of precipitation in the lower-troposphere. In addition to the

convective and stratiform categories, PR precipitation profiles are separated by the echo

top of the precipitation column, defined as the greatest altitude at which the PR-observed

reflectivity exceeds the 17 dBZ minimum detection threshold. The second categorization

10



is important because the profile of heating is limited, approximately, by the top of the

precipitation column.

Once a given PR precipitation profile is classified into a convective/stratiform and

echo top category, a heating profile is assigned to it according to cloud-resolving model

simulations of precipitation/latent heating profiles with the same characteristics. The

apparent heat source (Yanai et al. 1973) is defined

_fo
Q1 =

dt	 dz ) ,

where 7r is the exner function, defined

= (p 1000 hPa )
R cp

Here, 0 is potential temperature, V is the horizontal wind vector, w is the vertical wind

velocity, p is pressure, R is the dry air constant, cp is the specific heat of air at constant

pressure, and the overbars represent large-scale horizontal averages. The right-hand-side

of (1) therefore represents the large-scale average heating rate, and it is commonly

evaluated using arrays of rawinsondes with spacings ~ 200 km; see Mapes et al. (2003).

The apparent heat source can also be defined in terms of sources within the averaging

area

L
v 	Lf

Q
1 = 	( c e ) + ( 	 ) + Lsf m	 (	 )d s

cp	cp	cp

(3);\
+ i(_ V	

1op r

) 
+ QR

dz,

where the first three terms on the right-hand-side are the average latent heating due to

clouds and precipitation, the fourth and fifth terms are the horizontal and vertical

(1)

(2)

11



convergence of eddy sensible heat flux, the sixth term is the radiative heating rate (QR),

and the primes indicate eddy perturbations with respect to the horizontal average.

In the present study, cloud-resolving model simulations are used to evaluate the latent

and eddy sensible heat flux convergence terms of (3). Estimation of radiative heating

would require information regarding cloud properties that are not obtainable from

spaceborne radar or passive microwave observations alone, and therefore QR is not

considered here. Strictly speaking, the eddy heating terms are functions of the averaging

scale, and in the context of the current application the dimension of the model domain (~

500 km) is proposed. In the deep-convective regimes of the tropics, the eddy sensible

heat flux terms are relatively small compared to the latent heating terms.

Following SH, three long-term model simulations are performed to establish the

relationships between PR-retrieved precipitation properties and the vertical latent+eddy

heating profiles. The simulations are performed using a 2D version of the Goddard

Cumulus Ensemble (GCE) model, described in Tao (2003) and Tao et al. (2003a).

Simulations in 2D allow for relatively high horizontal resolution (250 m) runs on a large

domain (512 km) for 30 days duration. It was shown by Lang et al. (2007) that better

diurnal convective growth was achieved by decreasing the GCE model horizontal grid

spacing from 1000 m, as in SH, to 250 m. It was also argued by Bryan et al. (2003) that

simulations with resolutions ~100 m enable the physical processes of turbulence to occur,

and these are essential for realistic representations of convective processes. In the

vertical, a 41 level variable grid with higher resolution in the boundary layer (about 80 m)

and lower resolution in the upper troposphere (about 1000 m) is utilized. The domain is

periodic in the horizontal, which allows for long-term integrations of the model; see Tao

12



et al. (2003b). In addition to predictions of the basic thermodynamic variables and

winds, the GCE bulk microphysics parameterization yields prognostic water contents for

5 hydrometeor classes, including nonprecipitating cloud liquid, rain, nonprecipitating

cloud ice, snow, and graupel. Precipitation and latent+eddy heating profiles are

evaluated every hour of simulation time at each model horizontal gridpoint.

The model is run for three 30-day periods, nudged by the large-scale advective

forcing of temperature, humidity, and horizontal winds, using the method described in

Tao et al. (2003b). Advective forcings are derived from rawinsonde array observations

from the South China Sea Monsoon Experiment (SCSMEX) Northern Enhanced

Sounding Array (NESA) over the period 00 UTC 18 May Ð 00 UTC 17 June 1998, the

Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment

(TOGA COARE) Intensive Flux Array (IFA) over the period 00 UTC 19 Dec. 1992Ð00

UTC 18 Jan. 1993, and the Kwajalein Experiment (KWAJEX) array over the period 06

UTC 6 Aug. Ð 06 UTC 5 Sept. 1999. The SCSMEX and TOGA COARE observations

were analyzed by Johnson and Ciesielski (2002) and Lin and Johnson et al. (1996),

respectively. The KWAJEX observations were subject to the constrained variational

analysis described in Zhang et al. (2001). Although fairly diverse environmental forcing

conditions are represented by the three field campaign observing periods, very general

relationships between precipitation and latent+eddy heating cannot be established from

this limited sample. However, for the purpose of testing the heating estimation method in

applications to TRMM observations in the tropics and subtropics, these simulations are

adequate. A more comprehensive strategy for sampling atmospheric environments is

under development by the authors and will appear in a future study.
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With the exception of the first 36 hours of each simulation, which represents the

model spin-up period, at each hour of simulation time the instantaneous profiles of

precipitation and latent+eddy heating are extracted from the simulation at each model

horizontal gridpoint. The classification of each gridpoint as convective or stratiform is

performed using the methodology described by Lang et al. (2003). The precipitation

profiles at each gridpoint are used to evaluate the corresponding unattenuated radar

reflectivities in 250 m thick bins along each profile; the reflectivities are then averaged in

the horizontal to 4 km resolution to approximate the vertical and horizontal resolution of

the PR (0.25 km and 4.3 km, respectively). The model simulated precipitation and

latent+eddy heating profiles are also averaged in the horizontal to the same resolution.

The averaged profiles are categorized as convective (stratiform) if the average convective

(stratiform) model rain rate averaged over 4 km exceeds the average stratiform

(convective) rain rate. The echo top of the precipitation column is determined by the

altitude of the first average reflectivity bin, starting from the top of the model domain,

that exceeds the 17 dBZ PR detection threshold. After the echo top of the precipitation

column is determined, the profile is categorized by echo top in 2 km deep bins.

Once all of the simulated hydrometeor profiles are separated into

convective/stratiform and echo top categories, all of the latent+eddy heating profiles in

each category are averaged to produce lookup tables of the type shown in Fig. 2. These

tables are similar to Fig. 6 of SH, but in their study, non-convective precipitation was

separated into “stratiform” and “anvil” categories, where the category “anvil” represented

all stratiform precipitation for which the precipitation top height was greater than the

altitude of the melting level. Subsequently, “anvil” heating profiles were indexed by the
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precipitation rate at the melting level. Since considerable variation of echo top heights

occurs for both the “stratiform” and “anvil” categories, these categories were combined

in the stratiform category of the present study. Note also that although qualitatively

similar, the three model simulations produce different distributions of precipitation types.

For example, the stratiform rain percentages are 34%, 41%, and 45% for the SCSMEX,

TOGA COARE, and KWAJEX simulations, respectively. Generally, these percentages

tend to be lower than the mean stratiform percentages estimated in the tropics and

subtropics by the PR, which has an impact on the design of the algorithm; see the next

subsection.

c. The PR Training Algorithm

Given an observed PR precipitation profile and its corresponding

convective/stratiform classification, echo top, and precipitation profile, the cloud-model-

based heating lookup tables are used to assign a latent+eddy heating profile as follows. If

the profile is convective, then the observed echo top is used to identify the mean

convective heating profile and surface rain rate from the convective heating table. If

horizontal transports of precipitating hydrometeors could be neglected, then under steady

state conditions the surface precipitation x L would equal the vertically-integrated

heating in the profile. However, a significant percentage of condensate formed in the

convective region is typically advected to stratiform areas, resulting in a surplus of

heating relative to surface rain rate x L . Conversely, there is generally a deficit of

heating in stratiform regions relative to rain rate x L due to the influx of condensate from

the convective region. As an approximation, it is assumed here (as in SH) that the
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Q1(z) - QR (z)
LonvPRadj = Q

1
(z)QR(z)

Lonv,PR 
,3 (6)

and

convective and stratiform heating profiles are still proportional to surface rain rate.

Therefore, if a PR observation is classified as convective, then

= KQ1(z) - QR(z)conv_model)
Pconv-PR	 (4)Q1(z) - QR(z)conv_PR	

Pconvmodel

is an estimate of the convective heating profile corresponding to the PR-estimated

convective rain rate, Pconv-PR , and Q1(z) – QR(z) | conv-model is a convective latent+eddy

heating profile and Pconv-model is a convective rain rate, respectively, from the model

simulations, and the brackets ( ) indicate an ensemble average over all convective model

profiles in the appropriate echo top category of the lookup table. Similarly, if a PR

observation is classified as stratiform,

= KQ1(z) - QR(z)strat_model)
Pstrat-PR. (5)Q1 (z) - QR (z)trtPR	

Pstratmodel

In estimating space- or space-time average heating profiles, the estimated average

heating profile would be equal to an average of the PR footprint-scale estimates given by

(4) and (5). However, since the advection of condensate from convective to stratiform

regions in the model simulations may be different from the advection of condensate over

a given area/period where (4) and (5) are applied, the estimated average, vertically-

integrated heating and the estimated average surface rain rate x Lv over that area/period

may not be equal. To make a correction for this effect, the model heating profiles in (4)

and (5) are scaled by constant factors to yield

Q1 (z) - QR (z)trtPRdj 
= Q1 (z) - QR (z)

trtPR 7 ,	 (7)
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where

/3 = (1— fstrat_model)/( 1 - fstrat_PR), 	 (8)

7 = fstratmodelfstratPR '	 (9)

and

fstratmodel 	 = Pstratmodel Ptotalmodel, (10)

fstratPR = PstratPR PtotalPR
	 (11)

Here, the subscript “adj” refers to the adjusted convective and stratiform heating profiles,

and “total” indicates combined convective and stratiform rain. The overbar indicates a

space-time average, and in the present context, the model precipitation rates are averaged

over all of the model volumes in a given 30-day simulation. The PR-estimated

precipitation rates are averaged over all TRMM PR profiles over ocean during a one-

month period. By adjusting the lookup table profiles using factors (8) and (9), the

estimated total monthly vertically-integrated latent heating from PR is brought into close

agreement with the total monthly surface rain rate x Lv.

Using the 30-day SCSMEX simulation and four months (April, July, October of 1998

and January of 1999) of PR data as a reference, mean values of fi and y equal to 1.42 and

0.64 respectively, are obtained. (Note: the specific choice of PR time period is not

critical, since the fi and y values are similar for each month.) Similar algorithm

applications based upon the TOGA COARE and KWAJEX simulations yield values of fi
equal to 1.26 and 1.17 and values of y equal to 0.78 and 0. 85, respectively. After the fi
and y factors are applied, PR estimates of vertically-integrated latent heating and surface

rain rate x Lv based upon the SCSMEX heating lookup table, averaged over all ocean

regions and the four test months, are within 6%. If the heating estimation method had
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been based upon a large spectrum of model simulations with different proportions of

advected condensate, then the lookup table profiles might better represent global

conditions, and fi and y could approach unity. However, the model could have its own

inherent biases, and so some correction would likely be required. The use of a larger

spectrum of model simulations is left for future studies.

d. Echo Top Correction

As noted by SH, the distribution of simulated radar echo tops from cloud resolving

model simulations is different from the echo top distributions derived from PR

observations. In the present study, the histograms of both convective and stratiform

model-simulated echo tops is shifted toward higher echo tops relative to PR-observed

echo top histograms. To help compensate for this shift, the indexed echo tops associated

with each model-simulated heating profile are reduced by a factor of 0.9 in this study.

This shift is justified because of a known bias in the cloud-resolving model ice

microphysics, which leads to excessive graupel and snow production in GCE simulations;

see Lang et al. (2007).

The model echo top scaling helps to bring the model-simulated echo top histograms

from SCSMEX (NESA forcing; 18 May – 17 June 1998 period) and the PR-observed

echo top histograms derived from observations over the same region and period of

SCSMEX into better agreement. The correction is important because the depth of the PR

estimated heating profiles is determined by the PR observed echo top. In the future, as

the microphysical parameterizations of cloud-resolving models such as GCE improve,

this echo top correction should no longer be necessary.
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e. Radiometer Estimates ofLatent Heating

Equations (6) and (7) are applied to all PR-retrieved precipitation profiles over ocean

during a one-month period (July 2000) to create the foundation of the satellite radiometer

algorithm training database. Since our study is currently limited to satellite radiometer

heating estimates from TMI, the training database is completed by storing, in the

database, the observed TMI radiances collocated with the PR-retrieved precipitation and

heating profiles. In an attempt to match the resolution of the TMI observations, the PR

precipitation/heating profiles in 3 x 3 neighborhoods centered on each TMI footprint are

horizontally averaged and stored with the collocated TMI radiances. The collocation

procedure establishes the relationships between TMI radiances and latent+eddy heating

profiles. In order to examine the sensitivity of the TMI heating estimates to the cloud-

resolving model simulations, separate training databases are created using the SCSMEX,

TOGA COARE, and KWAJEX heating lookup tables.

Once created, the training databases are incorporated into the Bayesian estimation

method of GO and applied to TMI radiance observations. Briefly, this algorithm does an

initial search of the database to find vertical profiles that are consistent with

climatological sea surface temperature conditions in the region of algorithm application,

and it also finds those profiles that have echo tops close to a TMI radiance-based estimate

of the echo top. The subset of database profiles with compatible sea surface temperatures

and echo top characteristics is then examined to see how the observed TMI radiances and

database radiances compare. (Note that in addition to the single-footprint radiances at all

TMI channel frequencies and polarizations, the local variance of 85 GHz vertical
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polarization radiances in a 3 x 3 footprint neighborhood is also used as a radiance

predictor.) A Bayesian composite of the radiatively-consistent profiles in the database

subset is created to yield the final TMI precipitation and heating profile estimates. A

detailed description of the Bayesian algorithm may be found in GO.

3. Comparisons of Radiometer and Radar-Based Estimates

Here, estimates of Q1-QR from the TMI algorithm are compared to estimates from the

PR training algorithm. In this comparison, the TMI algorithm trained using the

SCSMEX simulation latent heating lookup tables is utilized. The purpose of this test is

to evaluate the consistency of TMI precipitation and heating estimates and the PR

training data. Inconsistencies between the two sets of estimates would indicate a

deficiency of relevant information on precipitation/heating in the TMI observations

and/or a lack of relevant radiance predictors derived from the TMI observations.

Shown in Figs. 3a and 3b are the mean surface rain rates, stratiform rain fractions,

and Q1-QR at 7 km and 2 km altitudes for the period March 1998 – February 1999, based

upon the TMI algorithm and the PR training algorithm, respectively. Note that although

the TMI and PR mean rain rate distributions are similar, the distributions of stratiform

rain fraction show some significant differences. In particular, the range of stratiform

fractions from TMI is less than that of the PR, and the zonal gradient of PR stratiform

fractions across the tropical Pacific Ocean is not evident in the TMI estimates. Regarding

Q1-QR, the distributions of upper-tropospheric heating from TMI and PR are quite

similar. On the other hand, greater convective precipitation percentages from TMI,

particularly in the eastern tropical Pacific, are associated with greater lower-tropospheric
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heating from the TMI algorithm. The TMI convective bias also manifests itself in

elevated lower-tropospheric heating in the South Pacific Convergence Zone and over the

central Indian Ocean.

The regional variation of TMI Q1-QR estimates and the differences with respect to the

PR training algorithm are further illustrated in Fig. 4. To construct this figure, six test

regions, defined in Table 1, are used to represent characteristically different latent heating

regimes for which the heating vertical structure or its variability are generally different.

Monthly-mean TMI and PR estimates of Q1-QR profiles in each test region, computed for

all 12 months during the March 1998 – February 1999 period, provide the basis for the

statistics shown in Fig. 4. The bold, solid curves are the 12-month mean profiles, while

the thin solid curves are the standard deviations of monthly values over the 12-month

period. The dashed and dash-dot curves represent the biases and error standard

deviations, respectively, of the TMI Q1-QR monthly estimates relative to the PR monthly

estimates.

First, note from Fig. 4 that the TMI algorithm appears to capture regional variations

of latent heating vertical structure. So, for example, the estimated shallow convective

heating associated with trade wind cumulus and precipitating congestus over the north

central Pacific (NCPAC) is in marked contrast to the deep heating structures of the inter-

tropical convergence zone regimes, which are dominated by organized convective

systems. The variation of estimated heating profiles tends to be greatest in the upper

troposphere, at least in the deep convective regimes near the equator. The bias of TMI

estimates relative to the PR in the upper troposphere is generally small; however, in the

lower troposphere, the TMI estimates show a positive bias of varying magnitude. As
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noted previously, this positive bias is most pronounced in the eastern Pacific, with a

maximum magnitude of 1.9 K day -1 , and therefore it has a significant impact on the

vertical heating distribution. TMI error standard deviations relative to PR are also

greatest in the lower troposphere, and the magnitudes of these errors are of the same

order as the month-to-month variation of heating.

The vertical distributions of biases and error standard deviations suggest that it is

difficult for the current TMI algorithm to accurately quantify Q1-QR in the lower

troposphere, or at least it is difficult for the algorithm to reproduce the lower-tropospheric

heating variations derived from the PR observations. An examination of instantaneous,

footprint-scale estimates of heating from the TMI and PR indicate a lack of sensitivity of

the TMI predictors (both radiances and 85 GHz radiance variances) to variations of

convective/stratiform proportion, particularly in regimes such as the eastern tropical

Pacific. In the eastern tropical Pacific, specifically, Shige et al. (2008) present evidence

that precipitation systems have a tendency to be shallower, with weaker updrafts and less

production of ice-phase precipitation. For precipitation systems of this type, the heating

algorithm’s convective/stratiform separation must rely on lower-frequency microwave

emission signatures, which are less descriptive of convective/stratiform conditions in

weakly-organized systems; see Hong et al. (1999). A partial correction of the lower-

tropospheric bias using a maximum radiance difference predictor is examined in the

Summary and Recommendations section; however, a full correction will likely require

the construction of more specific algorithm training databases that target regional

climatic conditions.
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4. Sensitivity to the Cloud Resolving Model Tables

Here, the objective is to determine how the specific choice of training data affect

regional estimates of heating at monthly scale. The selected regions are the six regions

previously described in Section 3; see Table 1. As in the last section, the heating

algorithm trained using the SCSMEX simulation is first applied to TMI data from each of

the 12 months from March 1998 through February 1999. Monthly, regional-mean Q1 -QR

is calculated for each of the six regions in the table. Next, the TMI algorithm trained

using the TOGA COARE and KWAJEX simulations is alternately applied to the 12

months of regional data, and monthly, regional-mean Q1-QR is calculated using these two

variations of the algorithm. For each month and region, a reference Q1-QR is then

computed as the arithmetic mean of the SCSMEX, TOGA COARE, and KWAJEX

estimates, following the work of Smith et al. (2006). The biases and error standard

deviations of the SCSMEX monthly, regional-mean estimates are then evaluated relative

to the reference mean estimates. Since the reference estimates are based on only 3

different lookup tables, the computed biases and error standard deviations are only

intended to provide a rough measure of the magnitudes of potential errors that might be

incurred by using only a single lookup table to train the TMI algorithm.

Shown in Fig. 5 are the 12-month mean and standard deviation profiles of the

monthly, regional-mean SCSMEX estimates, as well as the bias and error standard

deviation profiles of the SCSMEX-based estimates relative to the reference estimates. In

the mean, the SCSMEX-based estimates deviate from the reference by at most 0.6 oK

day-1 at an altitude near 6 km. Error standard deviations of the SCSMEX-based estimates,

on the order of 0.5 o
K day-1 or less, are relatively small. It might be concluded that as
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long as the simulations utilized to generate a given lookup table are representative of the

region where the algorithm is applied, then the heating estimates will not be too sensitive

to the details of the table. However, in light of the regionally-dependent heating biases

noted in section 3, regionally-dependent or regime-dependent training of the TMI

algorithm should help to reduce heating biases, and lookup tables consistent with the

regions or regimes selected for training should be developed.

5. Evaluation of Radiometer Estimates vs. Field Observations

In this section, satellite estimates of surface rain rate, Q1-QR, and Q1 are compared to

rawinsonde-based estimates of surface rain rate and Q1. The satellite estimates of surface

rain rate and Q1-QR are derived from the TMI algorithm trained using the SCSMEX

cloud model lookup tables, as described previously. Satellite estimates of Q1 are derived

by combining the TMI Q1-QR with estimates of QR from the Hydrologic cycle and

Earth’s Radiation Budget (HERB) algorithm originally described in L’Ecuyer and

Stephens (2003, 2007). Briefly, HERB synthesizes ice cloud microphysical property

information from VIRS, liquid cloud properties, precipitation profiles, SST, and water

vapor retrievals from the TRMM TMI, and vertical profiles of temperature and humidity

from European Center for Medium-range Weather Forecasts (ECMWF) reanalyses, to

characterize the three-dimensional structure of clouds and precipitation in the

atmosphere. These provide input to a broadband radiative transfer model that simulates

vertical profiles of upwelling and downwelling longwave and shortwave radiative fluxes

and their convergence/divergence, defining the vertical profile of atmospheric QR . A
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comprehensive description of the latest version of the HERB algorithm and its

uncertainty characteristics can be found in L’Ecuyer and McGarragh (2009).

Independent estimates of surface rain rate and Q1 are derived from enhanced

sounding network and surface data that were collected during field campaign intensive

observing periods. Data collected from the Northern Enhanced Sounding Array (NESA)

during the intensive observing period of SCSMEX (5 May – 20 June 1998) were

analyzed by Johnson and Ciesielski (2002). The sounding array data were augmented

with large-scale analyses of pressure, temperature, humidity, and winds to estimate the

mean vertical profiles of Q1 and Q2 over the NESA. By vertically integrating Q2 to

obtain the net atmospheric sink of humidity, and adding to this estimates of surface

evaporation from a combination of ship measurements and analyzed fluxes, Johnson and

Ciesielski (2002) also estimated surface rain rate as a residual of the moisture budget.

For the purpose of the intercomparisons in the present study, a subset of the intensive

observing period (15 May – 20 June 1998) was selected, due to the increased potential for

biases in the analyzed winds during the monsoon pre-onset period (prior to 15 May,

approximately); see Johnson and Ciesielski (2002).

More recently, estimates of Q1 and Q2 were derived from rawinsonde network data

collected during the Mirai Indian Ocean cruise for the Study of the Madden-Julian-

Oscillation convection Onset (MISMO; Oct. – Dec. 2006). Surface rain rates were

estimated as a residual of the moisture budget in a manner similar to Johnson and

Ciesielski (2002), using additional shipboard flux measurements. MISMO estimates of

surface rain rate and Q1 were provided by Dr. Masaki Katsumata of the Japanese Agency

for Marine-Earth Science and Technology (JAMSTEC). During the period 31 October –
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26 November 2006, the MISMO rawinsonde network was fully operational, and so data

from that period were selected for the purpose of intercomparisons in the present study.

A description of the synoptic-scale processes over the MISMO network during this

period is given in Katsumata et al. (2009b).

Time series of surface rain rate, TMI Q1-QR, combined TMI/VIRS Q1, and

rawinsonde Q1 over the SCSMEX NESA are presented in Fig. 6a. A 3-day running mean

filter is applied to all time series to reduce the effects of random sampling errors; see

Mapes et al. (2003) for a discussion of the impact of temporal averaging on the errors of

rawinsonde-based heating estimates. Note that there is a fairly good correspondence

between TMI and rawinsonde-derived estimates of surface rain rate, in spite of the very

different methods employed to make these estimates. Nevertheless, there are some

significant differences between the time series prior to 15 May, near 25 May, and after 7

June, 1998. By subsampling the rawinsonde time series within 1.5 hours of the TMI

overpass times (not shown), it was determined that the differences prior to 15 May and

near 25 May are likely due to insufficient temporal sampling by the TMI (~1.4 day- 1 )

relative to that of the rawinsonde array (2-4 day-1 ). The differences after 7 June are not

affected greatly by sampling, and the lighter precipitation during that period may be

difficult for TMI to detect. In spite of the sampling differences, the mean rain rates from

the TMI (10.3 mm day-1 ) and the rawinsonde analyses (9.4 mm day-1 ) over the entire

period are close in magnitude.

When the TMI/VIRS estimates of QR are added to the TMI estimates of Q1-QR, the

resulting heating estimate is a close approximation to Q1. Only eddy sensible heat flux

contributions outside regions of precipitation are not included in the TMI/VIRS Q1
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estimate, and these eddy contributions primarily impact the heating of the boundary

layer; see Newell et al. (1969); Schaack et al. (1990). Aside from the periods of

undersampling by TMI, the Q1 time series from TMI/VIRS and the rawinsonde analyses

are qualitatively similar. The main notable differences are the peak magnitudes of

heating, which are higher in the TMI/VIRS series. The mean heating profiles for the

entire period, normalized by the mean surface rain rates, are shown in Fig. 6b. The

higher peak magnitude of Q1 from the TMI/VIRS is evident from the figure, and the

impact of radiative cooling is nearly uniform in the vertical. Although the vertical

gradient of TMI/VIRS heating with altitude is similar to that of the rawinsonde analyses

below the level of peak heating (about 7.5 km), there is a sharper falloff of TMI/VIRS

heating with altitude above that level. The TMI estimates of rainfall show a deficiency of

rain relative to the rawinsonde Q2 budget analyses after June 11, which might account for

the deficiency of Q1 above 7.5 km; however, radiative cooling is particularly strong near

10 km altitude, and so the ingredients of both the Q1-QR and QR satellite estimates should

be examined for potential biases. This work is left for a future study. Nevertheless, the

addition of TMI/VIRS radiative cooling profiles to the TMI Q1-QR profiles yields

estimates of Q1 that are a much better approximation to the rawinsonde estimates of Q1

than if they were omitted.

TMI sampling of the MISMO array (1.2 day -1 ) is less than that of the NESA array,

and the correspondence between the TMI and rawinsonde estimates of surface rain rate is

weaker; see Fig. 7a. Subsampling of the MISMO rawinsonde time series near the TMI

overpass times (not shown) does not necessarily result in a better correspondence with

the TMI time series. The bias of the TMI Q1 estimates in the time series of Fig. 7a
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clearly follows the bias of the TMI rain estimates. The total bias of the TMI rain rates

(12.4 mm day-1 ) relative to the rawinsonde rain estimates (9.5 mm day -1 ) over the entire

observation period is significant. After normalization by rain rate, the mean TMI/VIRS

and rawinsonde Q1 heating profiles are similar; see Fig. 7b. The TMI/VIRS mean Q1

profile exhibits a slightly stronger peak heating near 7.5 km, and weaker heating at higher

and lower altitudes, relative to the rawinsonde mean Q1 profile.

6. Summary and Recommendations

In this study, satellite passive microwave sensor observations from the TMI are

utilized to make estimates of latent+eddy sensible heating rates (Q1-QR). The TMI

heating algorithm, TRAIN, is calibrated using relatively accurate PR-based estimates of

heating, which are collocated with the TMI observations over a one month period to

create a training dataset. The TMI heating estimation technique is based upon a Bayesian

methodology originally described in GO, but with noted improvements.

Estimates of Q1-QR from TMI compare favorably with the PR training estimates and

show only modest sensitivity to the cloud-resolving model simulations of heating used to

construct the training data. Moreover, the net condensation in the corresponding annual

mean satellite latent heating profile is within a few percent of the annual mean surface

precipitation rate over the tropical and subtropical oceans where the algorithm is applied.

Comparisons of Q1 produced by combining TMI Q1-QR with estimates of QR from

L’Ecuyer and McGarragh (2009) show reasonable agreement with rawinsonde-based

analyses of Q1 from two field campaigns, although the satellite estimates exhibit heating
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profile structure with sharper and more intense heating peaks than the rawinsonde

estimates.

Although the emphasis in this study has been on the characterization of errors in

microwave radiometer heating estimates, more work is required to (a) reduce biases in

regional heating estimates, particularly in the eastern Pacific where estimated lower-

tropospheric heating is significantly greater than the PR training estimates, and (b)

produce a useful model of the random errors in heating estimates that covers the range of

space-time scales considered in weather and climate applications. Regarding (a),

regional or climate-regime dependent training of the heating method may be required,

since the current method is only designed to minimize the heating bias on a global basis.

Such regional training has been applied to microwave precipitation estimation by Shin

and Kummerow (2003) with some success. With respect to (b), an error model for TMI

precipitation estimates was developed by Olson et al. (2006) to span scales from

instantaneous microwave footprints to seasonal averages at 2.5 o resolution. The form of

such an error model should also be applicable to estimates of Q1-QR, but first, the space-

time correlation of random heating errors must be estimated to in order to produce a

credible model.

Another strategy to reduce heating bias and random error is to introduce additional

radiance predictors into the estimation method. In the current method, only the radiances

at each TMI channel frequency and the local variance of 85 GHz vertical polarization

radiances in a 3 x 3 footprint neighborhood are utilized to estimate heating. In a

preliminary test, these radiance predictors are augmented by the 19 GHz horizontal

polarization “maximum difference” as an additional predictor. The radiance maximum
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difference is defined here as the maximum difference between the radiance of a given

central footprint and the radiances of all neighboring footprints in a small grid

surrounding the central footprint; e.g., see Hong et al. (1999). In the present

implementation, the grid of footprints includes all footprints within one scan line and

three scan positions of the central footprint, forming a an approximately square region 28

km on a side. The 19 GHz maximum difference radiance predictor identifies local

maxima of microwave rain emission that may be associated with convective

precipitation. What prompted the choice of this additional predictor is the

misidentification by the current TMI algorithm of shallow, uniform rain fields as partially

convective, and this leads to greater estimated convective heating than that determined

from the PR. When the additional predictor is included in the estimation method and

applied to TMI data from the March 1998 – February 1999 period, the stratiform

precipitation fraction in the TEPAC region increases only 2%, but the high bias in lower-

tropospheric heating is reduced by 18% at 3 km altitude and 28% at 4 km altitude. The

TEPAC mean Q1-QR profiles with and without the new radiance predictor are shown in

Fig. 8. Tests such as this one illustrate the potential benefits of exploiting new radiance

information in radiometer-based heating estimation methods.

It should be emphasized that the microwave radiometer estimates of Q1-QR in this

study include eddy sensible heat flux contributions, but only where the algorithm is

applied; i.e., in regions of significant precipitation. Outside regions of precipitation, the

contributions of sensible heat fluxes to atmospheric heating, particularly in the boundary

layer, are significant. Therefore, for global energy budget applications, an effort to

estimate boundary layer heating using satellite observations, in conjunction with model-
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based analyses, should be undertaken. The estimation of heating profiles over land,

although much more difficult from passive microwave radiometry due to the reduced

precipitation signal, must also be considered if the atmospheric energy budget is to be

“closed”. Since land regions tend to be data-rich relative to ocean regions, large-scale

analyses of pressure, temperature, humidity, and winds could be adjusted using satellite

passive microwave and visible/infrared estimates of water and energy fluxes to provide

improved estimates of diabatic heating; see Xie et al. (2004). The estimation of boundary

layer heating and the extension of the heating estimation method to land regions will be

the subjects of future studies by the authors.
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Tables

Table 1. Regions used in the error analysis of TMI Q1-QR estimates.

Region	 Latitude Range	 Longitude Range

Northwest Pacific Ocean 	 20o N Ð 30o N	 130 o E Ð 160o E
(NWPAC)

North Central Pacific Ocean 	 15 o N Ð 25 o N	 180 o W Ð 150 o W
(NCPAC)

Tropical Western Pacific Ocean	 0o Ð 10o N	 130 o E Ð 160o E
(TWPAC)

Tropical Eastern Pacific Ocean	 0o Ð 10o N	 130 o W Ð 100 o W
(TEPAC)

Tropical Central Indian Ocean 	 10o S Ð 0o 	 60 o E Ð 90o E
(TCIO)

Tropical Central Atlantic Ocean	 0o Ð 10o N	 45 o W Ð 15 o W
(TCATL)
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Figure Captions

Fig. 1. Flow diagram for the PR training algorithm and TMI latent heating algorithm.

Fig. 2. Latent+eddy heating profile lookup tables derived from SCSMEX simulations

(top row) and TOGA COARE simulations (bottom row). Colors indicate the magnitudes

of the mean heating rates, divided by the mean surface rain rates, of model profiles

binned by echo top, plotted on the abscissa. Convective and stratiform heating tables are

shown in the left and right columns, respectively.

Fig. 3. Mean estimates of surface rainfall rate, stratiform rain proportion, and Q1-QR at 7

km and 2 km altitudes from (a) the TMI algorithm, and (b) the PR training algorithm, for

the period 1 March 1998 –28 February 1999. Estimates from the TMI have been

subsetted to include only those coinciding with the PR swath.

Fig. 4. Profiles of the mean, standard deviation, bias, and error standard deviation of

TMI monthly-mean estimates of Q1-QR for the six regions defined in Table 1, over the

period 1 March 1998 – 28 February 1999. Biases and error standard deviations are

based upon the differences of estimates from the TMI algorithm and the PR training

algorithm. Estimates from the TMI have been subsetted to include only those coinciding

with the PR swath.

Fig. 5. Same as Fig. 4, but the biases and error standard deviations are estimated

potential errors due to the choice of heating lookup table. The biases and error standard
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deviations are based upon the differences between the TMI algorithm (using the

SCSMEX heating lookup table) and an average of TMI algorithm estimates derived using

the SCSMEX, TOGA COARE, and KWAJEX heating lookup tables.

Fig. 6a. Time series of surface rain rates from the TMI algorithm and the rawinsonde

moisture budget (top panel), TMI estimates of Q1-QR (second from top), TMI/VIRS

combined estimates of Q1 (third from top), and rawinsonde analyses of Q1 (bottom panel)

for the period 15 May–20 June, 1998, over the SCSMEX NESA.

Fig. 6b. Rain rate normalized mean profiles of TMI-estimated Q1-QR, TMI/VIRS

combined estimates of Q1, and rawinsonde analysis estimates of Q1 for the period 15 May

–20 June, 1998, over the SCSMEX NESA.

Fig. 7a. Same as Fig. 6a, but for the period 31 October – 26 November, 2006, over the

MISMO sounding array.

Fig. 7b. Same as Fig. 6b, but for the period 31 October –26 November, 2006, over the

MISMO sounding array.

Fig. 8. Estimates of the mean profiles of Q1-QR over the TEPAC region (see Table 1) for

the period 1 March 1998 –28 February 1999, based upon the TMI algorithm and an

alternative TMI algorithm (Alt) that utilizes an additional radiance predictor for the local

intensity of microwave emission in the 19 GHz horizontal polarization channel.
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Fig. 1. Flow diagram for the PR training algorithm and TMI latent heating algorithm.

Radar
Training

Algorithm

PR profile data
(rain rates, stratiform
proportions, echo top
heights)

Radiometer
Algorithm

TMI radiance
data

latent heating
lookup tables

(from cloud-resolving
model simulations)	 TMI radiances

(collocated with

4 PR estimates)

training database
rain rates,	 (precipitation/latent I

stratiform rain
proportions,	

heating profiles and
collocated TMI

I	 I
heating profiles	 I radiances)	 I

4
rain rates,

stratiform rain
proportions,

heating profiles

43



o —
()

Q1 - QR conv

P
conv

15

LJ	 -

H
H—J
<5

—

0	 5	 10	 15
ECHO TOP (km)

--I

155	 10
ECHO TOP (km)

K mn-i

:'

: I
Is

Fig. 2. Latent+eddy heating profile lookup tables derived from SCSMEX simulations
(top row) and TOGA COARE simulations (bottom row). Colors indicate the magnitudes
of the mean heating rates, divided by the mean surface rain rates, of model profiles
binned by echo top, plotted on the abscissa. Convective and stratiform heating tables are
shown in the left and right columns, respectively.

Q1 - QR cony

P
cony	I',. ni m

15	 _•• !

1O	
.	 II—

Q1 - QR strat

P K fl1fl1strat

1.5

15	 1.0

-I
—	 ft5-

10	 -	 •

5	 10
ECHO TOP (kiii)

Q1 - QR strat

P
strat

15

LIJ 1O

F5-

ECHO TOP (km)

K urn
1.5

1.0

0.5

0.0

-0.5

-I.0

.5:

44



5

0

Fig. 3. Mean estimates of surface rainfall rate, stratiform rain proportion, and Q1-QR at 7
km and 2 km altitudes from (a) the TMI algorithm, and (b) the PR training algorithm, for
the period 1 March 1998 – 28 February 1999. Estimates from the TMI have been
subsetted to include only those coinciding with the PR swath. Fig. 3(a)
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Fig. 4. Profiles of the mean, standard deviation, bias, and error standard deviation of
TMI monthly-mean estimates of Q1-QR for the six regions defined in Table 1, over the
period 1 March 1998 – 28 February 1999. Biases and error standard deviations are
based upon the differences of estimates from the TMI algorithm and the PR training
algorithm. Estimates from the TMI have been subsetted to include only those coinciding
with the PR swath.
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Fig. 5. Same as Fig. 4, but the biases and error standard deviations are estimated
potential errors due to the choice of heating lookup table. The biases and error standard
deviations are based upon the differences between the TMI algorithm (using the
SCSMEX heating lookup table) and an average of TMI algorithm estimates derived using
the SCSMEX, TOGA COARE, and KWAJEX heating lookup tables.
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Fig. 6a. Time series of surface rain rates from the TMI algorithm and the rawinsonde
moisture budget (top panel), TMI estimates of Q1-QR (second from top), TMI/VIRS
combined estimates of Q1 (third from top), and rawinsonde analyses of Q1 (bottom panel)
for the period 15 MayÐ 20 June, 1998, over the SCSMEX NESA.
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Fig. 6b. Rain rate normalized mean profiles of TMI-estimated Q1-QR, TMI/VIRS
combined estimates of Q1, and rawinsonde analysis estimates of Q1 for the period 15 May
– 20 June, 1998, over the SCSMEX NESA.
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Fig. 7a. Same as Fig. 6a, but for the period 31 October – 26 November, 2006, over the
MISMO sounding array.
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Fig. 7b. Same as Fig. 6b, but for the period 31 October – 26 November, 2006, over the
MISMO sounding array.
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Fig. 8. Estimates of the mean profiles of Q1-QR over the TEPAC region (see Table 1) for
the period 1 March 1998 –28 February 1999, based upon the TMI algorithm and an
alternative TMI algorithm (Alt) that utilizes an additional radiance predictor for the local
intensity of microwave emission in the 19 GHz horizontal polarization channel.
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